
Memory mapping and
computer number systems

using the VZ200/300
Bob Kitch

This contribution will hopefully stimulate users of the VZ200/300 (or perhaps
other small micros) to think about what actually lies behind the keyboard or
monitor. Therein resides, not simply a collection of electronic components,
but a truly creative, near-art form; only restricted by the users' ingenuity. I
also hope to provide a firm foundation for users to understand how they
should visualise or conceive the internals of their computer. This will lead to
more imaginative and rewarding use of their somewhat meagre hardware
resources.

THE COMPUTER can be conceptualised (thought of) on two
distinct planes: (i) the tangible, mechanical or physical lev-
el; and (ii) the intractable, esoteric or conceptual level. These
two "states" are often synonymously associated with the
hardware and software aspects of computing but they are
not quite analogous as a brief consideration should reveal.

The realisation that the computer can in reality adopt any
position between these two end-states sheds some insight into
how useful a computer can be as a problem solving tool or
as a creative device.

The computer is a virtual machine. It is incapable of do-
ing mechanical work such as that done by an internal com-
bustion engine. Furthermore, a computer can be configured
via suitable programming to carry out any function that we
may envisage for it. Again the analogy with a tool, for in-
stance a spanner, is instructive. A shifting spanner has only
one use — it is dedicated to that job (although I have seen
some tradesmen use it as a hammer!). The important notion
in computing is that our imagination is the limiting factor
in determining the usefulness of the computer. We may wish
to use it to monitor the security of our home or to create fan-
tasies of our mind in intellectual and role-playing games, to
carry out tedious and repetitive number crunching, or to cor-
rect text for us — etc. The spectrum of jobs is vast, and in-
creasing almost daily.

Transformation
Somewhere between the conception of an idea and the trans-
lation of this into a computer-based chore, lies the fundamen-
tal task of the programmer. The use of the operation called
"transformation" is vital to the succes of this translation. The
transformation procedure takes a particular notion in our
minds (the "object") and produces a "model" of this in the
computer. The model may be termed the "image". A good
computer image is a skilful combination of the joint hard-
ware and software aspects of the particular computing con-
figuration.

Often a number of step-wise transformations are required
to reach the desired goal or end-point. The distribution of
tasks proportioned between hardware and software depends
upon

90 — Australian Electronics Monthly — Dec. 1986

i) the resources available, and
ii) the particular talents of the person undertaking the

implementation.

Electrical engineers tend to solve problems with hardware
intensive solutions, whilst programmers often develop
elaborate algorithmic software solutions.

Not surprisingly, transformation has a well developed and
rigorous expression in mathematics where the somewhat al-
lied ideas of correspondence (between similar objects) and
function (connecting objects) have relevance. The box enti-
tled "Transformation Concepts" accompanying this article
futher elaborates upon some of the powerful transformation
concepts — in layman's language.

The way in which "correspondence" occurs in computer
science and with which perhaps most programmers are
familiar, lies in the various types of codes and coding prin-
ciples which are employed to connect the diversity of ideas
under software control. Note that in transformations from
object to image the direction of the conceptual movement
may be in either direction or sense.

Thus encoding represents transforming the object into the
image and decoding represents returning the object from the
image. Also, multiple levels of coding are often used, depend-
ing upon where we are positioned in the hardware-software
spectrum.

Codes
Consider the following code types:

i) Codes used by electronic circuits to perform digital oper-
ations e.g: binary codes.

ii) Codes used to convert decimal numbers into binary form
e.g: binary coded decimal (BCD) and gray scale.

iii) Codes used to convert decimal numbers and alphabetic
symbols into digital form e.g: ASCII, EBCDIC and
Baudot code.

iv) Codes used by computers to perform a prescribed ser-
ies of operations e.g: Z-80 instruction code and PDP8IE.

He
x a

de
ci

m

FFFF
F800
F7FF

0

Sw
it

c
he

d

C

CO

CC

Sw
it

c
he

d

2K top of fixed
 RAM Bank

CZ

C
0

C

1 /40

Port Addressed I/O
00

Figure 1.

Internal User RAM 6K

Reserved RAM

Video RAM 2K

Memory Mapped I/O 2K

DOS
ROM
8K

0
CC

Re
se

rv
e

d

VZ- 200 VZ-300
CU

M/M 	 C M
aJ E 	 (7. E

IA t..)
C W

-1 65535
-2048 63482
-2049 63487

-12268 53248 D000
-12889 53247 CFFF

49152 C000
49151 BFFF
47104 B800
47103 B7FF

-16384
-16385
-18432
-18433

Std. +
16K Expansion Memory Expansion

64K Std. +
16K Expansion

64K
Memory Expansion

9.1

0

C

co

cc

%./D

V
0J

C
0
•r-

C

12K top of fixed
RAM Bank

Internal User RAM 16K
-28672 36864 9000

aJ

t1J

aJ
oc

•

-28673 36863 8FFF

-32768
+32767

30720 7800
30719 77FF
28672 7000
28671 6FFF
26624 6800
26623 67FF
24576 6000
24575 SFFF

16384 4000
16383 3FFF

ROM

1
8K

ROM
0

8K

8192 2000
8191 1FFF

0 0000

R. 8. KITCH March 1986

Reserved RAM

Video RAM 2K

Memory Mapped I/O 2K

ROM
0

14X

DOS
ROM
8K

FF

00
Port Addressed I/O

MEMORY MAPPING
FOR

VZ-200 & VZ-300

Dec. 1986 — Australian Electronics Monthly — 91

NUMBER BASE CONVERSION & MEMORY MAPPING
In the accompanying article the need to be able to change num-
ber representations, according to differing bases, becomes ap-
parent.

Three bases are usually cited and often freely interchanged.
These are:

base 10 — decimal (dec./D) uses symbols 0-9
base 16 — hexadecimal (hex./H) uses symbols 0-9, A-F
base 2 — binary (bin./B) uses symbols 0 and 1

The first system is the most familiar to us. The last is the num-
ber system of digital computers. The hex system is a convenient
intermediate form between decimal and binary systems. (A fourth
system to base 8, or octal — using symbols 0-7 — is sometimes
employed and is also a convenient intermediate form — see later).

The accompanying table is an indispensable reference for con-
verting base numbers. I always have this chart alongside me when
programming — although some people may be fortunate enough
to have an electronic calculator with base conversion functions.

Because there are three base numbers, it follows that there are
six possible types of conversion. At the conclusion of this box you
should be familiar with each conversion and be able to manipu-
late the resulting numbers.
DESCRIPTION OF TABLE
Table 1 is composed of six columns.

Column 1 (left-hand most) represents single hex digit ranging
from OH to FH.

Columns 2 to 5 are labelled Most Significant 3-0 for decimal
numbers.

MSO corresponds with 16* *0*N (1 *N)
MS1 " " " 16**1 *N (16*N)
MS2 " 16* *2*N (256"N)
MS3 ft

" 16**3*N (4096*N)

Column 6 is the four-bit binary number corresponding to the hex
digit in column 1.

One hex digit can represent half-a-byte (one-nibble) of binary in-
formation. Hence the close relationship between hex and binary
representations. A 16-bit (two-byte) binary number maps onto four
hex digits. A single byte maps onto two hex digits. (Octal or base-8
numbers map onto three bits of binary hence an eight-bit binary
number can be represented by three octal digits.)
CONVERSION PROCEDURE
A. We will start converting a hex address value into its correspond-
ing decimal and binary values.

1. Converting hex to dec. We will do this using an example. For
instance, what is the decimal mapping of address 345CH? Note
that the Most Significant Byte (MSB) is 34H and the Least Signifi-
cant Byte (LSB) is 5CH.

The corresponding decimal for 3H (actually 3000H) appears in
column MS3 and maps as 12288D. Similarly, the 4H (400H) in po-
sition MS2 maps as 1024D; 5H or 50H maps as 80D in MS1 and
finally, CH corresponds to 12D from MSO.

Thus,
3000H 12288D
400H —Do- 1024D
50H --111" 80D

+ CH + 12D

B. Let us now take a decimal number and convert it into hex and
then binary.

3. Converting dec to hex. What is the hex mapping of 22010D?
This involves a little scanning of MS3-MSO of the table.

First scan down MS3 for a decimal number which is equal to,
or just less than, 22010D. This is seen to be 20480D which maps
as 5000H. Subtract this value from 22010D and look for the num-
ber just lower than this is MS2. For example 22010D — 20480D
= 1530D. The number just lower than this in MS2 is 1280D which
maps as 500H. The remainder from this operation is 250D which
corresponds to 240D or FOH in MS1. The final remainder is 10D
which maps as AH in MSO.

Thus:

22010D
- 20480D
- 1280D
- 240D
- 10D

OD 55FAH

It should be easy to convert this hex number into binary
equivalent.

55FAH maps as 01010101 11111010 B

C. Let's now start with a binary number and convert it to hex and
then to decimal (as previously done).

4. Converting bin to hex. By now you should be getting the idea.
Simple isn't it? For example, convert the two-byte address
10011111 11010011B (looks horrible doesn't it?) into its hex value
and then decimal value.

1001 1111 1101 0011 B — from column 6

9 F D 3 H— from column 1

Furthermore,

9000H 36864D
FOOH 3840D
DOH 208D

+ 3H + 3D
9FD3H 40915D

For those that have been following closely, 40915D is an unsigned
decimal and mapped as a signed decimal it is

40915 — 65536 = -24621D
(see later in main article if unsure)

So in summary, we now have four ways of mapping the same
address:

hex 9FD3H
unsigned decimal 40915D
signed decimal -24621D
binary MSB 10011111B LSB 11010011B

5000H
500H
FOH

+ AH

345CH --to- 13404D
So 345CH maps as 13404D. A little involved, but easy with the

table.
2. Converting hex to bin. Remember I said that hex and binary sys-
tems are closely related. Again, what is the binary mapping of ad-
dress 345CH?

3 4 5 C H — from column 1

0011 0100 0101 1100 B — from column 6

So the binary address for 345Ch would be —

MSB 00110100B LSB 01011100B
It could hardly be simpler!
See how difficult it would be to remember binary, but hex is much

more concise and memorable?

As a final comment and for completeness, it should be said that
all the examples given herein are for unsigned decimal numbers
in the range of 0 to 65535D. These map onto two-byte numbers
ranging from 0000H to FFFFH in hex and 00000000 00000000 to
11111111 11111111 in binary.

The same principles apply for single-byte numbers except that
the range of unsigned decimals is reduced to 0 to 255D and OOH
to FFH in hex. Only MS1 and MSO need be used in converting
single-byte numbers.

Given this background then, it should be easy to calculate the
appropriate values to POKE into addresses 30862D (788EH) and
30863D (788FH) to initialise the USR() command on the VZ. But
more of that next time.

If you want some practice in number base conversion and re-
quire some additional confidence in following the procedures set
out herein then take some addresses from the memory map and
practise converting them. (I hope I get them right!)

92 — Australian Electronics Monthly — Dec. 1986

v) Codes used by programmers to describe a problem to
the computer e.g: BASIC, FORTRAN, and SAS.

vi) Codes used by the populace to have work done by a com-
puter which is often transparent to the user. Everyday-
type language is often used to communicate to the com-
puter. (i.e: no special skills are required) e.g: POS (Toint-
of-sale') terminals or pushbutton data entry panels on
microwave ovens etc.

All of these forms of transformation (or coding) describe
a relation or function between any object (the notion) and
its correb,onding image (the programme). Flowcharting is
often an intermediate coding step in the transformation
process.

The memory image
Towards the hardware end of the spectrum previously allud-
ed to lies the memory or storage system of the computer. Both
the programme (or driver) and data are stored in memory
which is sequentially addressed in the present generation of
Von Neumann machines. Often a successful programmer
"needs to get close" to this physical device — particularly
in a small microcomputer environment where the memory
resource is usually limited. 4K of memory usually requires
some smart coding to get a worthwhile programme running
— and often in machine code. Larger machines sometimes
use a virtual or paged memory system so that the program-
mer does not need to get close to the hardware limitations.
Such things as programme and storage overlaying can be
done to make the memory system appear larger than it actu-
ally is. The new generation of 16- and 32-bit microproces-
sors include on-chip memory management functions (e.g: the
80286) to handle memory paging.

The usual way of describing the memory system of a par-
ticular computer is via the "Memory Map". This is a trans-
formation of the actual (object) memory chips contained in
the computer. This conceptual diagram (image) is an aid for
the programmer. It is not a map in the same sense as a geo-
graphic (or road) map, but rather it has a one-to-one cor-
respondence with the actual memory system. It does not
actually point up any directions in the memory, in the way
that a road map does. The memory map is simply a useful
programmers' image of the storage which can be accessed
by the CPU and the way it is organised.

VZ memory maps
(You thought I was never going to get to it!) Figure 1 is a
Universal Memory Map) for all the VZ-200 and VZ-300 com-
pluters. These are expandable machines in that additional
memory modules, disc systems and various other peripher-
als can be added onto the standard system. Eight distinct
types of machine are detailed:

a) standard "8K" VZ-200 and
b) standard "18K" VZ-300 (both shown in the dark outline)

In the standard machine an area of 10K is reserved for plug-
in ROM cartridges. To each of the types can be added:

i) a 16K memory expansion module or
ii) a 64K memory expansion module, and additionally

iii) a disc system containing an 8K DOS can be added which
utilises portion of the reserved ROM area.

Thereby eight types of VZ configuration are possible and
shown in Figure 1.

A study of the range of memory expansion modules added
to the VZ-200 or VZ-300 indicates that they occupy different

areas of memory. This clearly shows why expansion mod-
ules are not interchangeable between models. Fortunately all
of the "system areas" are compatible across models — other-
wise software would not be transportable. All memory ad-
dresses below the reserved RAM (communications area) are
the same on either system. This includes video RAM, memory
mapped I/O, port addressed I/O and DOS ROM. As most of
the peripherals are mapped into the I/O areas, these devices
are also compatible between models.

Numbering systems for memory mapping
The three columns extending down the left-hand side of the
map are the memory address ranges in the computer that are
handled by the Z-80 microprocessor. Again the concept of
"mapping" is worth noting — because the CPU uses none
of the techniques shown in the columns to actually address
memory! The actual (object) addressing method is a 16-bit
wide binary sytem which, with suitable decoding, can resolve
all the addressing functions necessary. A binary view of the
addressing is unnecessarily complicated to obtaining a clear
image of the VZ's address space.

An explanation of the three numbering systems used on
the memory map follows.

Two forms of decimal (base 10) notation and one of hex-
adecimal (base 16) are shown. These are image numbering
systems of the actual (object) 16-bit binary (base 2) method
used by the Z-80 (Port addressed I/O uses only eight-bits of
the Least Significant Byte of the address, to uniquely identi-
fy the 256 I/O ports).

If you are not particulary familiar with converting or deal-
ing with numbers derived from differing bases, then read the
boxes called "Number Base Conversion" accompanying this
article.

Unsigned decimal addressing
This number system is shown in the central column of the
memory map. It is perhaps the easiest to understand and ex-
plain. With a 16-bit binary number as used on the address
bus, it is possible to uniquely map 2* *16 or 65536 memory
locations. These addresses may furthermore be mapped into
a one-dimensional vector with memory location OD (2* *1-1)
mapped at the bottom and memory location 65535D (2**16-1)
mapped at the top. This convention of "top" and "bottom"
may be inverted — but top of memory is conventionally
referred to as the bigger decimal number — so it makes little
logical sense to have "top" at the bottom! (Note that some
memory maps are drawn in this inverted sense).

Another sense of mapping is apparent and worth mention-
ing here. This type of map is a byte-mapped transformation
as each address is actually eight-bits wide. Most data process-
ing programming deals with bytes as the fundamental units
of information. However, the Z-80 can be addressed down
to bit level and hence another bit-mapped image containing
524288 (65536*8) bits could be conceived. Some controller
applications make use of bit mapping because often the avail-
able RAM for programme use is rather restricted and usual-
ly the definition or resolution of the process is two-state and
can be aptly modelled by a single-bit.

In the unsigned decimal mapping methods, magnitude or
size of the address number uniquely defines the location of
the address in memory. Relational operators such as "great-
er than" and "less than" work correctly. This image of ad-
dressing is most easily visualised but it bears a difficult
relationship to the 16-bit object addressing.

Hexadecimal addressing
This system is shown in the third column and has a stronger
relationship to the two-byte wide addressing used by the CPU

Dec. 1986 — Australian Electronics Monthly — 93

e.g: domain
X

range
X"X+ 2

6
11

TRANSFORMATION CONCEPTS
In a transformation, the point being transformed is called the ob-
ject. A transformation maps an object onto its' image according
to some relation.

An image is the result when an object is transformed. e.g:

X X + 2
3 5
0 2
6 8

-7 5
object image

"the image of 3 is 5"

Relations are a way of connecting sets of numbers — a map-
ping is a special relation.

In a mapping, any number in the set being mapped is an object,
but the entire set being mapped is usually called the domain.

The domain of a function is a set of numbers mapped by the
function.
The domain is the object set.

"the set (1, 2, 3, 4) is the domain"

A mapping is a relation in which, for every object mapped, there
is one, and only one, image.

e.g: X

But X is a factor of

3
5

6
9

15

is a valid mapping. is NOT a mapping.

Functions are special relations in which each object is uniquely
mapped onto one image.

e.g: X
+2

X* *2

9 	 4 .
3 9
4 16

is a valid function.

But X X""0.5 (square root of X)
1 + 1 or -1
4 + 2 or -2
9 + 3 or -3

is NOT a valid function.

Correspondence has four types:
Mappings are:

Many to one correspondence One to one correspondence

t v
a
) it..

 u a u
b v

----IP' c w c w
d x d x
e y e y
f z f z

NOT mappings are:

Many to many correspondence One to many correspondence
a a
b

e -may

94 — Australian Electronics Monthly — Dec. 1986

bus system. Each nibble (half-a-byte or four-bits) of the ad-
dress is mapped onto one hexadecimal digit.

Whilst this, system may appear a little unfamiliar, it has
magnitude and sense — the same as the unsigned decimal
notation. Therefore, similar connotations apply to the hex-
adecimal system as to the unsigned decimal system.

The correspondence between "top of memory" in an un-
expanded VZ-200 as being 36863D or 8FFFH should be ob-
vious from the memory map. It is simply a different way (by
virtue of the number base difference) of image-mapping the
same object.

In certain applications it is more convenient to use decimal
notation — and in others it is clearer to use hexadecimal. If
it is necessary to get close to the hardware, such as when
designing the address decoding for a peripheral expansion,
then hexadecimal, with its closer relationship to bus address-
ing, is better. Alternatively, when a programmer is wanting
to locate a routine in memory, there is less need to get close
to the machine, (e.g: when PEEKing or POKEing), and the
more familiar decimal system is easier. In reality, ex-
perienced programmers or engineers readily flip from one
to the other — particularly if they have a "smart" electronic
calculator with base conversion functions.

Up to this point, all should appear to be logical, orderly
and comprehensible. Unfortunately, the people who wrote
the Microsoft version of the BASIC interpreter resident in
the VZ (and previously used in the TRS-80 Level II, System-80
and PET) must have thought that unsigned decimal and hex-
adecimal were too logical and easily understood! If you try
to PEEK into an address higher than 32767D or 7FFFH you
will obtain an "OVERFLOW ERROR" message during run
time. A look at the Reference Manual informs you that the
valid address range is from —32768D to + 32767D. Fair
enough, but can one now assme that "top of memory" is
+ 32767D and "bottom of memory" is —32768D. A reasona-
ble deduction, but unfortunately, entirely incorrect! Is our
faith in mathematics and logic (relational operators) mis-
placed?

Signed decimal addressing
The culprit is the signed decimal numbering system shown
in the left hand column of the memory map. This number
system is closely derived from the 16-bit binary system. The
signed decimal numbering is developed from the two's com-
plement binary system which is a method that facilitates the ►

TABLE 1.
CONVERSION DECIMAL — HEXADECIMAL — BINARY

Dec.
MSB LSB

4096 256 16 1
Hex. MS3 MS2 MS1 MSO Bin.

0 0 0 0 0 0000
1 4096 256 16 1 0001
2 8192 512 32 2 0010
3 12288 768 48 3 0011
4 16384 1024 64 4 0100
5 20480 1280 80 5 0101
6 24576 1536 96 6 0110
7 28672 1792 112 7 0111
8 32768 2048 128 8 1000
9 36864 2304 144 9 1001
A 40960 2560 160 10 1010
B 45056 2816 176 11 1011
C 49152 3072 192 12 1100
D 53348 3328 208 13 1101
E 57344 3584 224 14 1110
F 61440 3840 240 15 1111

manipulation of negative numbers. Do not be overwhelmed
if the terms are unfamiliar as it is not essential to understand
their derivation. There exists a simple relationship between
the familiar unsigned decimal and the signed decimal
systems.

The simplest way of expressing the relationship is that if
the unsigned decimal address is greater than 32767D then
subtract 65536D from the unsigned decimal value — there-
by obtaining a (negative) signed decimal. If the unsigned
decimal is less than or equal to 32767D then the signed
decimal value maps directly. Expressing this in BASIC is as
follows:

UD = unsigned decimal value
SD = signed decimal value

To convert UD to SD:

15 IF UD, > 32767 THEN SD = UD — 65536
ELSE SD = UD

To convert SD to UD

25 IF SD < 0 THEN UD = SD + 65536
ELSE UD = SD

Refer to the mapping in the extreme left hand column of
the memory map where the signed decimal system is detailed.
Bottom of memory is still OD but top of memory is —1D. A
very important discontinuity occurs in the numbering sys-
tem at mid-memory, where adjacent bytes are numbered
32767D and —32768D. Relational operators do not work in
this mapping system.

Suppose one wanted to PEEK into each consecutive
memory address over the entire range of memory from OD
to —1D (note!). As remarked previously, it is necessary to use
signed decimals when PEEKing.

The loop written in BASIC —

10 FOR SD = —32768 TO + 32767
20 V = PEEK (SD)
30 PRINT SD, V
40 NEXT SD

will not provide a consecutive listing of memory. It will
commence at the base of the upper half of memory (SD =
32768D) and proceed to the top of memory (SD = —1). It will
then leap to the bottom of memory (SD = OD) and proceed
to the mid memory (SD = + 32767D) position. Not quite what
was intended!

To achieve the desired result, the following loop could be
written:

10 FOR UD = 0 TO 65535
20 SD = UD: IF UD > 32767 THEN SD = UD — 65536
30 V = PEEK (SD)
40 PRINT SD, UD, V
50 NEXT UD

This will correctly step-up through memory consecutive-
ly from bottom to top (but slowly!)

Uses of the memory map
Having worked thus far through this exposition, what are
some of the uses to which the memory map can be put? The
first use is when it provides the programmer with a clear im-
age (that word again) of how the addressable memory of the
computer is organised. A number of advanced programming
techniques for the BASIC interpreter also become available.
For example, the utilisation of the memory by a BASIC
programme can be determined. Overlaying of the Programme
Statement Table by another routine but with retention of the
Variable List Table, becomes possible. Also Assembly Lan-
guage routines can be loaded into Free Space and called by
the USR statement. Overwriting and corruption of
programmes (images) can be avoided by reference to the map
during loading. If, however, this does inadvertently occur,
then the memory map becomes an important load map for
debugging purposes.

A more detailed description of the I/O area (including the
video RAM) mapping for the peripheral devices, and the com-
munications area would provide more information for ad-
vanced programming techniques. Perhaps, with the Editor's
indulgence, we may be able to explore these interesting areas
at a future date? Meanwhile, get to understand your VZ'd,
practise number base conversions and let your imagination
run with applications for the VZ.

Dec. 1986 — Australian Electronics Monthly — 95

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

